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Gravitational wave astronomy is here: the most exotic compact mergers (BH-BH)
may be the most commonly detected, at least for a while
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»  O2 run later this year: more mergers, NS-NS horizon still unlikely
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NASA GSFC 2016

GWI150914:
3 solar masses of

gravitational radiation!

Abbott et al. 2016
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Can we expect high-energy electromagnetic counterparts! BH-BH mergers
expected to be dark. GBM detected a weak event close in time to GW 150914
with a 0.2% probability of occurring by chance.

GBM detectors at 150914 09:50:45.797 +1.024s
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> Duration, spectrum consistent with short GRB
> Localization very crude but consistent with GW 150914

> Event looks unusual as arrival direction under spacecraft is
not favorable.

> Need more LIGO - GRB-like-transient coincidences to be
convinced this is the e-m counterpart of GW 150914,

FAR = 27 hard events in 218821.1 s of GBM live time, factor of 3 for spectra searched, 90% confidence

P=2x(4.79%x10-4Hz)x0.4sx(1+In(30s/0.256 s)) =0.0022

/ Offset between GW TO and GBM event start

Factor of 2 to account for offset in time in either direction

Effective trials factor for non-independent,
variable time bins (30s is maximum offset
set by the search window, 0.256 is the
minimum set by native CTIME data)

VC+ 2016
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High-energy counterparts are expected for NS-NS and NS-BH mergers: these
mergers are the most popular model for short GRBs and, if they are mergers,
GRBs are the only surefire e-m counterpart to mergers events.

Gamma ray radiation is seen in a jet
as a short GRB that is

detectable if the jet is pointed at us.
GBM/BAT etc. can see very far.
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Figure 1 of Meztger & Berger 2012
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Joint GRB LIGO/Virgo events
happen when the jet is pointed
towards us and the merger happens
nearby i.e., quite rarely <I-- handful
joint detections per year (model-
dependent). It is very important to
maximize the probability of joint
GRB LIGO/Virgo detections and
enable supporting observations that
will provide the distance scale and
energetics of the explosion.

NASA GSFC 2016
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Owing to all-sky coverage, Fermi GBM detects and localizes more short GRBs than
other GRB detectors: numbers matter!

Fermi GBM short GRBs as of 151030 GBM: 40 short GRBs per year,
90 coarse localization (tens square
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s 291 Short GRBs localization facilitating
— 27 also triggered Swift-BAT follow-ups.
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Even a large banana and a large orange can help: using joint GBM-LIGO/Virgo
detections and GBM non-detection to guide follow-up observers.

Typical GBM GRB localization region Typical LIGO localization region from
for weak GRB http://www.ligo.org/scientists/first2years/:

changes in 2016 with addition of Virgo

18 +/- 5 nearby galaxies (N. Gehrels et al. 2015, arXiv:1508.03608)

Typical reduction of 80% in sky region:

4 nearby galaxies: easier to follow up
with XRT or optical telescopes.

»  An MeV instrument with better localization capabilities would increase the probability of
finding the afterglow and host -> redshift
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Weak short GRBs are not necessarily more distant than bright short GRBs and
may lie within the detection horizon of LIGO/Virgo: sensitivity is important even
when only interested in nearby events.
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»  Extrapolating from sGRBs with known redshift gives <0.5 - 5 per year sGRB for GBM within LIGO
Virgo horizon (nearby z uncertain).

»  This number is doubled with unseeded search for GRBs that do not trigger on-board.
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The significance of sub-threshold LIGO/Virgo candidates is strengthened with a
coincident gamma-ray signal

»  Joint GBM-subthreshold search developed for LIGO/Virgo S6 science runs in
2009-2010 (L. Blackburn et al. ApJS 2015,217,8) - GBM background characterized
and likelihood-based search finds known short GRBs in GBM data.

»  In OlI, the GW detection was bright but the GBM detection was sub-
threshold!

»  Sensitivity of LIGO/Virgo search can be improved by ~15 - 20 % relative to

LIGO/Virgo alone (Blackburn et al. ibid; Kelley, Mandel & Ramirez-Ruiz 2013, PhRevD
87, 123004).
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What can high-energy observations contribute besides helping with localization
and follow-up?

»  Establish mergers as progenitors of GRBs - joint detection rates will indicate
collimation of GRB jet

»  ldentification of on-axis merger through the detection of GRB counterpart -
removes degeneracy between inclination and distance

»  Afterglow -> redshift unambiguously identifies host, providing another
measure of distance.

»  Can compare luminosity distance of GW and redshift of host to calibrate
distance scale -> Hubble constant.

»  Can compare e-m and GW energetics
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Looking beyond LIGO/Virgo: next generation GW ground arrays!?

Auriga
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Acernese et al 2015

»  Underground, 10 km arms! http://www.et-gw.eu/

»  No localization capability: MeV counterpart v.important!

»  Can see much farther than LIGO/Virgo: long GRBs (CC SN) likely sources

V. Connaughton Future Gamma-ray Space Detectors NASA GSFC 2016
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Looking beyond LIGO/Virgo: The MeV GRB instrument might have the limiting
sensitivity!
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GW astronomy beyond mergers: LISA. 2035 is not that far in the future for

planning space missions!
5 Mkm arms!
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> Galactic binary systems (periodic), coalescence of MBH, Extreme Mass Ratio
Inspirals, probing the geometry and dark energy content of the universe, seeing relics
from inflation (?), new physics!?

»  Unclear what role MeV observations could play in LISA era. Inspiral time-scales = |
year. Final merger = |0 minutes. Theorists?
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|ldeal MeV detector for GW astronomy

»  Need a monitor of the transient high-energy (>50 keV) sky
»  On-board trigger: identify on-axis mergers in real time to optimize follow-up

»  Detects lots of GRBs - broad field-of-view, good sensitivity (nearby != bright;
next-gen kHz GWV detector may probe more distant universe)

»  Localizes GRBs to sub-degree accuracy to facilitate follow-up observations
for afterglow/hosts

»  Has sub-MeV sensitivity to cover peak of GRB SED - energetics

»  Are there signals from LISA sources we need to predict and design for?
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